PHYS 331 - Assignment \#4

Due Monday, December 4 at 08:00

Figure 1: A signal generator with output impedance Z_{g} drives a transmission line of length ℓ that is terminated with load impedance Z_{L}.

Figure 1 shows the geometry of the transmission line system that we will use for all parts of this assignment. Assume $\ell=8 \mathrm{~m}, Z_{0}=50 \Omega$, and that the signal propagation speed is $s=0.7 c$, where c is the vacuum speed of the light. In our discussion of transmission lines we showed that, in the frequency domain:

$$
\begin{align*}
& \hat{v}(z, \omega)=V_{+}\left[e^{-j \omega z / s}+\Gamma e^{j \omega z / s}\right], \tag{1}\\
& \hat{i}(z, \omega)=\frac{V_{+}}{Z_{0}}\left[e^{-j \omega z / s}-\Gamma e^{j \omega z / s}\right] . \tag{2}
\end{align*}
$$

1. For all parts of this first problem, we will assume that the output impedance of the signal generator is matched to the characteristic impedance of the transmission line such that $Z_{\mathrm{g}}=Z_{0}$. Also assume that the output of the signal generator v_{g} is a square pulse with a height of 1 V and width 25 ns . In class, we showed that, in this case:

$$
\begin{equation*}
V_{+}=\frac{\hat{v}_{\mathrm{g}}}{2} e^{-j \omega \ell / s} \tag{3}
\end{equation*}
$$

We also showed that, in the time domain, the voltage at the input of the transmission line $(z=-\ell)$ is given by:

$$
\begin{equation*}
v_{\mathrm{in}}=\frac{v_{\mathrm{g}}(t)}{2}+\frac{\Gamma}{2} v_{\mathrm{g}}(t-2 \ell / s) . \tag{4}
\end{equation*}
$$

(a) Calculate the current at $i_{\text {in }}(t)$ at the input of the transmission line. For this calculation, assume that Γ is independent of ω.

Plot $i_{\text {in }}$ as a function of time for the cases $Z_{\mathrm{L}}=0,50 \Omega$, and ∞. You can sketch the current as a function of time by hand or you can plot it in Python using the linked code as a guide. If you sketch your plot by hand, you must include accurate and labeled scales for both the x - and y-axes.
(b) Calculate the voltage at $v_{\mathrm{L}}(t)$ at the load impedance. For this calculation, assume that Γ is independent of ω.

Plot v_{L} as a function of time for the cases $Z_{\mathrm{L}}=0,50 \Omega$, and ∞. You can sketch the voltage as a function of time by hand or you can plot it in Python using the linked code as a guide. If you sketch your plot by hand, you must include accurate and labeled scales for both the x - and y-axes.
(c) Calculate the current at $i_{\mathrm{L}}(t)$ at the load impedance. For this calculation, assume that Γ is independent of ω.

Plot i_{L} as a function of time for the cases $Z_{\mathrm{L}}=0,50 \Omega$, and ∞. You can sketch the current as a function of time by hand or you can plot it in Python using the linked code as a guide. If you sketch your plot by hand, you must include accurate and labeled scales for both the x - and y-axes.

For this problem, show the details of the calculations of $i_{\text {in }}, v_{\mathrm{L}}$, and i_{L}. Writing down only the correct answer will not result in full marks.

